Dwindling groundwater resources in northern India, from satellite gravity observations

نویسندگان

  • V. M. Tiwari
  • J. Wahr
  • S. Swenson
چکیده

[1] Northern India and its surroundings, home to roughly 600 million people, is probably the most heavily irrigated region in the world. Temporal changes in Earth’s gravity field in this region as recorded by the GRACE satellite mission, reveal a steady, large-scale mass loss that we attribute to excessive extraction of groundwater. Combining the GRACE data with hydrological models to remove natural variability, we conclude the region lost groundwater at a rate of 54 ± 9 km/yr between April, 2002 (the start of the GRACE mission) and June, 2008. This is probably the largest rate of groundwater loss in any comparable-sized region on Earth. Its likely contribution to sea level rise is roughly equivalent to that from melting Alaskan glaciers. This trend, if sustained, will lead to a major water crisis in this region when this non-renewable resource is exhausted. Citation: Tiwari, V. M., J. Wahr, and S. Swenson (2009), Dwindling groundwater resources in northern India, from satellite gravity observations, Geophys. Res. Lett., 36, L18401, doi:10.1029/2009GL039401.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical downscaling of GRACE gravity satellite-derived groundwater level data

With the continued threat from climate change, population growth and followed by increasing water demand, the need for hydrological data with high spatial resolution and proper time coverage to be felt more than ago. Therefore, having data such as terrestrial water storage changes and groundwater level changes with high resolution spatial helps to plan and make decisions for water resource mana...

متن کامل

A Feasibility Analysis of Land-Based SINS/GNSS Gravimetry for Groundwater Resource Detection in Taiwan

The integration of the Strapdown Inertial Navigation System and Global Navigation Satellite System (SINS/GNSS) has been implemented for land-based gravimetry and has been proven to perform well in estimating gravity. Based on the mGal-level gravimetry results, this research aims to construct and develop a land-based SINS/GNSS gravimetry device containing a navigation-grade Inertial Measurement ...

متن کامل

Gravity acceleration at the sea surface derived from satellite altimetry data using harmonic splines

Gravity acceleration data have grand pursuit for marine applications. Due to environmental effects, marine gravity observations always hold a high noise level. In this paper, we propose an approach to produce marine gravity data using satellite altimetry, high-resolution geopotential models and harmonic splines. On the one hand, harmonic spline functions have great capability for local gravity ...

متن کامل

Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer?

The Northwest India Aquifer (NWIA) has been shown to have the highest groundwater depletion (GWD) rate globally, threatening crop production and sustainability of groundwater resources. Gravity Recovery and Climate Experiment (GRACE) satellites have been emerging as a powerful tool to evaluate GWD with ancillary data. Accurate GWD estimation is, however, challenging because of uncertainties in ...

متن کامل

The impacts of different land use changes on groundwater level using quantitative model WEAP (Case study: Chaharmahal Bakhtiari province, Iran)

     Reduction of water resources limits the ability of farmers for food production and subsistence. Nowadays the quick growth of population has been the most important factor in the decline of renewable water. In many parts of Iran, including region of interest, the major factor in water resources decline was land use change, that may  cause to ecological destruction and disruption. Sustainabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009